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Abstract

A two-degree-of-freedom system having symmetrically placed rigid stops and subjected to periodic
excitation is considered. Such models play an important role in the studies of mechanical systems with
clearances or gaps. The period-one double-impact symmetrical motion and its Poincar!e map are derived
analytically. Stability and local bifurcations of the period-one double-impact symmetrical motion are
analyzed by the equation of Poincar!e map. The routes from period-one double-impact symmetrical motion
to chaos, via pitchfork bifurcations and period-doubling bifurcation, are studied by numerical simulation.
Some non-typical routes to chaos, caused by grazing the stops and Hopf bifurcation of period two four-
impact motion, are analyzed. Hopf bifurcations of period-one double-impact symmetrical and
antisymmetrical motions are shown to exist in the two-degree-of-freedom vibratory system with two-
sided stops. Interesting feature like the period-one four-impact symmetrical motion is also found, and its
route to chaos is analyzed. It is of special interest to acquire an overall picture of the system dynamics for
some extreme values of parameters, especially those which relate to the degenerated case of a single-degree-
of-freedom system, and these analyses are presented here.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Vibrating systems with clearances or gaps between the moving parts are frequently encountered
in technical applications of mechanism, vehicle traffic and nuclear reactor, etc. Repeated impacts,
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i.e., vibro-impacts, usually occur whenever the components of a vibrating system collide with rigid
obstacles or with each other. The principle of operation of vibration hammers, impact dampers,
machinery for compacting, milling and forming, shakers, offshore structures, etc., is based on the
impact action for moving bodies. With other equipment, e.g., mechanisms with clearances, heat
exchangers, fuel elements of nuclear reactors, gears, piping systems, wheel–rail interaction of high-
speed railway coaches, etc., impacts also occur, but they are undesirable as they bring about
failures, strain, shorter service life and increased noise levels. Researches into vibro-impact
problems have important significance on optimization design of machinery with clearances or
gaps, noise suppression and reliability analyses, etc. The physical process during impacts is
strongly non-linear and discontinuous, but it can be described theoretically and numerically by
discontinuities in good agreement with reality. Compared with single impact, the dynamics of
vibro-impacts is more complicated, and hence, has received great attention. Many new problems
of theory have been advanced in researches into vibro-impacts dynamics, and the study of
problems of impacting vibration becomes a new subject on non-linear dynamics. Dynamics of the
vibro-impact systems, including global bifurcations [1–5], singularities [6–10] and quasi-periodic
impact motions [11–16], etc., have been revealed, and some application researches [17–22] are also
unfolded. A two-degree-of-freedom system having symmetrically placed rigid stops and subjected
to periodic excitation is considered in the paper. The period-one double-impact symmetrical
motion and its Poincar!e map are established analytically. Stability and local bifurcations of the
period-one double-impact symmetrical motion are analyzed by using the equation of map. The
routes from symmetrical periodic impacts to chaos, via pitchfork bifurcation and period-doubling
bifurcation, are studied by numerical simulation. Some non-typical routes to chaos, caused by
grazing the stops and Hopf bifurcation of period-two four-impact motion, are analyzed. Hopf
bifurcation of period-one double-impact symmetrical and antisymmetrical motions are shown to
exist in the two-degree-of-freedom vibro-impact system with two-sided stops. It is of special
interest to acquire an overall picture of the system dynamics for some extreme values of
parameters, especially those which relate to the degenerated case of a single-degree-of-freedom
system, and these analyses are presented here.

2. The mechanical model

A two-degree-of-freedom system having symmetrically placed rigid stops and subjected to
periodic excitation is shown in Fig. 1. Displacements of the masses M1 and M2 are represented by
X1 and X2; respectively. The masses are connected to linear springs with stiffnesses K1 and K2; and
linear viscous dashpots with damping constants C1 and C2 . The excitations on both masses are
harmonic with amplitudes P1 and P2: The excitation frequency O and the phase t are the same for
both masses. The masses move only in the horizontal direction. For small forcing amplitudes the
system will undergo simple oscillations and behave as a linear system. As the amplitude is
increased, the mass M1 eventually begins to hit the stops and the motion becomes non-linear (the
other mass is not allowed to impact any rigid stop). The impact is described by a coefficient of
restitution R; and it is assumed that the duration of impact is negligible compared to the period of
the force. Damping in the mechanical model is assumed as proportional damping of the Rayleigh
type, which in this case implies C1=K1 ¼ C2=K2:
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The motion processes of the system, between consecutive impacts occurring at the stop A; are
considered. Between any two consecutive impacts, the time T is always set to zero directly at
the starting point A (the mass M1 departing from the X1 ¼ B stop with negative velocity), and the
phase angle t is used only to make a suitable choice for the origin of time in the calculation. The
state of the vibro-impact system, immediately after impact, has become new initial conditions in
the subsequent process of the motion. Between the stops, the non-dimensional differential
equations of motion are given by

1 0

0
m2

1 � m2

24 35 .x1

.x2

( )
þ

2z �2z

�2z 2z
1

1 � c2

24 35 ’x1

’x2

( )
þ

1 �1

�1
1

1 � k2

24 35 x1

x2

( )

¼
1 � f20

f20

( )
sinðot þ tÞ; jx1job: ð1Þ

When the impacts occur, for jx1j ¼ b; the velocities of the impacting mass M1 are changed
according to the impact law

’x1Aþ ¼ �R ’x1A� ðx1 ¼ bÞ; ’x1Cþ ¼ �R ’x1C� ðx1 ¼ �bÞ: ð2Þ

In Eqs. (1) and (2), a dot (�) denotes differentiation with to the non-dimensional time t: ’x1A�

and ’x1Aþ ð ’x1C� and ’x1CþÞ represent the impacting mass velocities of approach and departure at
the instant of impacting with the stop A ðCÞ; respectively. Where the non-dimensional quantities

m2 ¼
M2

M1 þ M2
; k2 ¼

K2

K1 þ K2
; c2 ¼

C2

C1 þ C2
; f20 ¼

P2

P1 þ P2
; o ¼ O

ffiffiffiffiffiffiffi
M1

K1

r
;

t ¼ T

ffiffiffiffiffiffiffi
K1

M1

r
; z ¼

C1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
K1M1

p ; b ¼
BK1

P1 þ P2
; xi ¼

XiK1

P1 þ P2
ð3Þ

have been introduced.
Eqs. (1) and (2) completely determine the dynamics of the system having two-sided constraints.

Let W represent the canonical model matrix of Eq. (1). o1 and o2 denote the eigenfrequencies of
the system as impacts do not occur. Taking W as a transition matrix, the equations of motion (1),
under the change of variables X ¼ Wn; becomes

I .n þ C ’n þ Kn ¼ %F sinðot þ dkÞ; ð4Þ
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where X ¼ ðx1; x2Þ
T; n ¼ ðn1; n2Þ

T; I is an unit matrix of degree 2� 2; C and K are diagonal
matrixs, and C ¼ diag½2zo2

1; 2zo
2
2
;K ¼ diag½o2

1;o
2
2
; %F ¼ ð %f1; %f2Þ

T ¼ WTPk; Pk ¼ ð1 � f20; f20Þ
T; n

is the response of Eq. (1) in the canonical co-ordinates. The equations of motion (1) are solved by
using the modal co-ordinates and the modal matrix approach. The general solution takes the form

xiðtÞ ¼
X2

j¼1

cijðe
�Zj tðaj1 cosodjt þ bj1 sinodjtÞ

þ Aj sin ðot þ tÞ þ Bj cos ðot þ tÞÞ; 0ptpt1;

xiðtÞ ¼
X2

j¼1

cijðe
�Zjðt�t1Þðaj2 cosodjðt � t1Þ þ bj2 sinodjðt � t1ÞÞ

þ Aj sin ðot þ tÞ þ Bj cos ðot þ tÞÞ; t1otpt1 þ t2 ð5Þ

in which, it takes the time t1 and t2; respectively, for the mass M1 to move from the constraint A to
C and from the constraint C to A: Where cij are the elements of the canonical modal matrix W;

Zj ¼ zo2
j ; odj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

j � Z2
j

q
; aj and bj are the constants of integration which are determined by the

initial condition and modal parameters of the system. Aj and Bj are the amplitude parameter,
which are given by

Aj ¼
1

2odj

oþ odj

ðoþ odjÞ
2 þ Z2

j

�
o� odj

ðo� odjÞ
2 þ Z2

j

 !
%fj; ð6Þ

Bj ¼
Zj

2odj

1

ðo� odjÞ
2 þ Z2

j

�
1

ðoþ odjÞ
2 þ Z2

j

 !
%fj: ð7Þ

3. Period-one double-impact symmetrical motion

Impacting systems are conveniently studied by use of a mapping derived from the equations of
motion. Each iterate of this map corresponds to the mass M1 striking the stop once. In this
section, only the periodic motion of the model, with two symmetrical impacts per force cycle, is
considered, which is called the period-one double-impact symmetrical motion. We can choose the
Poincar!e section s ¼ fðx1; ’x1;x2; ’x2; yÞAR4 � S; x1 ¼ b; ’x1 ¼ ’x1þg to establish the Poincar!e map
of period-one double-impact symmetrical motion

X 0 ¼ *f ðv;XÞ; ð8Þ

where y ¼ ot; XAR4; n is a real parameter, nAR1; X ¼ X� þ DX ; X 0 ¼ X� þ DX 0;
X� ¼ ð ’x1þ; x20; ’x20; t0Þ

T is a fixed point in the hyperplane s; DX ¼ ðD ’x1þ;Dx20;D ’x20;DtÞ
T and

DX 0 ¼ ðD ’x0
1þ;Dx0

20;D ’x0
20;Dt

0ÞT are the disturbed vectors of X�:
Under suitable system parameter conditions, the vibro-impact system given in Fig. 1 can exhibit

period-one double-impact symmetrical motion. The symmetrical periodic-impact behavior means
that if the dimensionless time t is set to zero directly after an impact occurring at the constraint A;
it becomes 2p=o just before the next impact occurring at the same constraint. It takes the same
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time for the mass M1 to move from the constraint A to C and from the constraint C to A; i.e.,
t1 ¼ t2 ¼ p=o: After the origin of y-co-ordinate is displaced to an impact point o1; the
determination of the period-one double-impact symmetrical motion is based on the fact that they
satisfy the following set of periodicity and matching conditions:

x1ð0Þ ¼ b; x1ð2p=oÞ ¼ b; ’x1ð0Þ ¼ �R ’x1ð2p=oÞ ¼ ’x1þ;

x2ð0Þ ¼ x2ð2p=oÞ ¼ x20; ’x2ð0Þ ¼ ’x2ð2p=oÞ ¼ ’x20;

x1ðp=oÞ ¼ �b; ’x1þðp=oÞ ¼ �R ’x1�ðp=oÞ ¼ � ’x1þ;

x2ðp=oÞ ¼ �x2ð0Þ ¼ �x20; ’x2ðp=oÞ ¼ � ’x2ð0Þ ¼ � ’x20: ð9Þ

Inserting the set of periodicity and matching conditions into the general solutions (5), we can
solve for the constants of integration ajk; bjk and the phase angle t0: For convenience in the
following, we give expression for some symbols h; lj and %lj firstly:

lj ¼
Rodjejðej þ cjÞ � ðR þ 1ÞejZjsj

1 þ ejcj

� odj ð j ¼ 1; 2Þ; ð10Þ

%lj ¼
ejodjðcj þ ejÞ

1 þ ejcj

þ odj ð j ¼ 1; 2Þ; ð11Þ

h ¼
c22

%l2ðR þ 1Þo
c11c22l1 %l2 � c12c21

%l1l2

� �
c12e2s2

1þ e2c2
�
c21

%l1

c22
%l2
�

c11e1s1

1þ e1c1

� �
; ð12Þ

in which, sj ¼ sinðpodj=oÞ; cj ¼ cos ðpodj=oÞ; ej ¼ e�Zjp=o; j ¼ 1; 2:
The phase angle t0 of period-one double-impact symmetrical motion is given by

t0 ¼ cos�1
%x10g7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � %x2

10 þ 1
q
g2 þ 1

0@ 1A; ð13Þ

where

%x10 ¼
b

hd2 � d1
; g ¼

hd1 þ d2

hd2 � d1
; d1 ¼

X2

j¼1

c1jAj; d2 ¼
X2

j¼1

c1jBj:

The constants of integration ajk and bjk are given by

b1k ¼ ð�1Þk�1 c22
%l2oð1þ RÞðd1 cos t0 � d2 sin t0Þ

c11c22l1 %l2 � c12c21
%l1l2

; ð14Þ

b2k ¼ ð�1Þk
c21

%l1oð1þ RÞðd1cost0 � d2 sin t0Þ
c11c22l1 %l2 � c12c21

%l1l2
ðk ¼ 1; 2Þ; ð15Þ

ajk ¼ �
ejbjksj

1þ ejcj

ð j ¼ 1; 2Þ: ð16Þ

In the paper, we can characterize periodic motions of the vibro-impact system by the symbol
n � p � q; where q and p is the number of impacts occurring, respectively, at the constraint A and
C; and n is the number of the forcing cycles. In formula (13), the sign 7 means that it is possible
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to exist two different 1-1-1 symmetrical solutions under the same system parameters for the vibro-
impact system with two stops. It should be noted that the existence of 1-1-1 symmetrical orbit
requires the condition as below

g2 � %x
2
10 þ 1X0;

%x10g7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � %x2

10 þ 1
q
g2 þ 1

������
������p1: ð17Þ

Otherwise, it is impossible for 1-1-1 symmetrical motion to exist. Substituting the constants of
integration (14)–(16) into the general solution (5), we obtain the period-one double-impact
symmetrical solution

xiðtÞ ¼
X2

j¼1

cijðe
�Zj tðaj1 cosodjt þ bj1 sinodjtÞ

þ Aj sin ðot þ t0Þ þ Bj cos ðot þ t0ÞÞ; 0ptpp=o;

xiðtÞ ¼
X2

j¼1

cijðe
�Zjðt�t1Þðaj2 cosodjðt � t1Þ þ bj2 sinodjðt � t1ÞÞ

þ Aj sin ðot þ t0Þ þ Bj cos ðot þ t0ÞÞ; t1 ¼ p=o; t1otp2p=o: ð18Þ

4. Poincar!e map of period-one double-impact symmetrical motion

We consider the perturbed motion of period-one double-impact symmetrical orbit to determine
the equation of the map. For convenience in the following, the origin of time is chosen at the
impact point. Here let *X ¼ ð *x1; *x2Þ

T and ’*X ¼ ð ’*x1; ’*x2Þ
T represent displacements and velocities of

the perturbed motion, respectively. Between two consecutive impacts occurring at the stop A; the
solutions of the perturbed motion are written in the form

*xiðtÞ ¼
X2

j¼1

cijðe
�Zj tð *aj1 cosodjt þ *bj1 sinodjtÞ þ Aj sin ðot þ t0 þ DtÞ

þ Bj cos ðot þ t0 þ DtÞÞ; 0ptp*t1;

*xiðtÞ ¼
X2

j¼1

cijðe
�Zjðt�*t1Þð *aj2 cosodjðt � *t1Þ þ *bj sinodjðt � *t1ÞÞ

þ Aj sin ðot þ t0 þ DtÞ þ Bj cos ðot þ t0 þ DtÞÞ; *t1otpte; ð19Þ

’*xiðtÞ ¼
X2

j¼1

cijððe
�Zj tð *bj1odj � Zj *aj1Þ cosodjt � ðZj

*bj1 þ *aj1odjÞ sinodjtÞ

þ Ajo cos ðot þ t0 þ DtÞ � Bjo sin ðot þ t0 þ DtÞÞ; 0ptp*t1;
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’*xiðtÞ ¼
X2

j¼1

cijðe
�Zjðt�*t1Þðð *bj2odj � Zj *aj2Þ cosodjðt � *t1Þ � ðZj

*bj2 þ *aj2odjÞ sinodjðt � *t1ÞÞ

þ Ajo cos ðot þ t0 þ DtÞ � Bjo sin ðot þ t0 þ DtÞÞ; *t1otpte: ð20Þ

in which, *t1 ¼ ðp=oÞ þ Dt1; *t2 ¼ ðp=oÞ þ Dt2; te ¼ *t1 þ *t2:
For the disturbed motion, the dimensionless time is set to zero directly after an impact

occurring at the constraint A; it becomes ð2pþ DyÞ=o just before the next impact occurring at the
same constraint, and Dy ¼ Dt0 � Dt; Dy ¼ oðDt1 þ Dt2Þ: Letting te ¼ ð2pþ DyÞ=o; the impact
boundary conditions of the disturbed motion, occurring, respectively, at the constraint A and C;
are expressed by

*x1ð0Þ ¼ b; *x1ðteÞ ¼ b; ’*x1ð0Þ ¼ ’x1þ þ D ’x1þ; *x2ð0Þ ¼ x20 þ Dx20; ’*x2ð0Þ ¼ ’x20 þ D ’x20;

*x1ð*t1þÞ ¼ �b; ’x1ð*t1þÞ ¼ � ’x1þ þ D ’x00
1þ; *x2ð*t1Þ ¼ �x20 þ Dx00

20; ’*x2ð*t1Þ ¼ � ’x20 þ D ’x00
20;

*x1ð*teÞ ¼ b; ’*x1ðteþÞ ¼ ’x1þ þ D ’x0
1þ; *x2ðteÞ ¼ x20 þ Dx0

20; ’*x2ðteÞ ¼ ’x20 þ D ’x0
20: ð21Þ

Inserting the boundary conditions (21) into the perturbed solutions (19) and (20) for t ¼ 0; we
can solve

*a1k ¼
1

D
ðc22 *x

ðkÞ
1 � c12 *x

ðkÞ
2 � DA1 sin dk � DB1 cos dkÞ; ð22Þ

*a2k ¼
1

D
ðc11 *x

ðkÞ
2 � c21 *x

ðkÞ
1 � DA2 sin dk � DB2 cos dkÞ; ð23Þ

*b1k ¼
1

Dod1
ðc22ð ’*x

ðkÞ
1 þ Z1 *x

ðkÞ
1 Þ � c12ð ’*x

ðkÞ
2 þ Z1 *x

ðkÞ
2 Þ � DðA1oþ Z1B1Þ cos dk

þ DðB1o� Z1A1Þ sin dkÞ; ð24Þ

*b2k ¼
1

Dod2
ðc11ð ’*x

ðkÞ
2 þ Z2 *x

ðkÞ
2 Þ � c21ð ’*x

ðkÞ
1 þ Z2 *x

ðkÞ
1 Þ � DðA2oþ Z2B2Þ cos dk

þ DðB2o� Z2A2Þ sin dkÞ; ð25Þ

in which, k ¼ 1; 2; *x
ð1Þ
1 ¼ b; ’*xð1Þ

1 ¼ ’x1þ þ D ’x1þ; *x
ð1Þ
2 ¼ x20 þ Dx20; ’*x

ð1Þ
2 ¼ ’x20 þ D ’x20; d1 ¼ t0 þ Dt;

*x
ð2Þ
1 ¼ �b; ’*xð2Þ

1 ¼ � ’x1þ þ D ’x00
1þ; *x

ð2Þ
2 ¼ �x20 þ Dx00

20; ’*x
ð2Þ
2 ¼ � ’x20 þ D ’x00

20; d2 ¼ o*t1 þ t0 þ Dt:
Substituting boundary conditions (21) into the perturbed solution (19) for t ¼ *t1; we obtain

�b ¼
X2

j¼1

c1jðe
�Zj

*t1ð *aj1 cosodj *t1 þ *bj1 sinodj *t1Þ þ Aj sin ðo*t1 þ t0 þ DtÞ

þ Bj cos ðo*t1 þ t0 þ DtÞÞ ¼ *x1ð*t1Þ: ð26Þ

Defining a function hðD ’x1þ;Dx20;D ’x20;Dt;Dt1Þ as

hðD ’x1þ;Dx20;D ’x20;Dt;Dt1Þ ¼ *x1ðp=oþ Dt1Þ þ b ¼ 0: ð27Þ

Suppose ð@h=@Dt1Þð0;0;0;0;0Þa0; according to the implicit function theorem, Eq. (27) can be solved
as

Dt1 ¼ Dt1ðD ’x1þ;Dx20;D ’x20;DtÞ; Dt1ð0; 0; 0; 0Þ ¼ 0: ð28Þ

ARTICLE IN PRESS

G.W. Luo, J.H. Xie / Journal of Sound and Vibration 273 (2004) 543–568 549



Let DX ¼ ðy1; y2; y3; y4Þ
T ¼ ðD ’x1þ;Dx20;D ’x20;DtÞ

T: The partial derivative of Dt1 with respect to
D ’x1þ; Dx20; D ’x20 and Dt may be expressed by

@Dt1

@yj

¼ �
@h

@yj

�
@h

@Dt1

� �
; j ¼ 1; 2; 3; 4: ð29Þ

Substituting the boundary conditions (21) into the perturbed solutions (19) and (20) for t ¼ te;
we can obtain

b ¼ *x1ðteÞ; ’x1þ þ D ’x0
1þ ¼ �R ’*x1ðteÞ; x20 þ Dx0

20 ¼ *x2ðteÞ; ’x20 þ D ’x0
20 ¼ ’*x2ðteÞ: ð30Þ

Defining a function gðD ’x1þ;Dx20;D ’x20;Dt;Dt1;Dt2Þ as

gðD ’x1þ;Dx20;D ’x20;Dt;Dt1;Dt2Þ ¼ *x1ðteÞ � b ¼ 0: ð31Þ

Suppose ð@g=@Dt2Þð0;0;0;0;0;0Þa0; according to the implicit function theorem, Eq. (31) can be
solved as

Dt2 ¼ Dt2ðD ’x1þ;Dx20;D ’x20;Dt1;DtÞ; Dt2ð0; 0; 0; 0; 0Þ ¼ 0: ð32Þ

The partial derivative of Dt2 to D ’x1þ; Dx20; D ’x20 and Dt may be expressed by

@Dt2

@yj

¼ �
@g

@yj

þ
@g

@Dt1
�
@Dt1

@yj

�� �
@g

@Dt2

� �
; j ¼ 1; 2; 3; 4: ð33Þ

Inserting formulae (28) and (32) into formula (30), we get finally the Poincar!e map of period-
one double-impact symmetrical motion

D ’x0
1þ ¼ *f1ðD ’x1þ;Dx20;D ’x20;Dt;Dt1;Dt2Þ � ’x1þ ¼Def

f1ðD ’x1þ;Dx20;D ’x20;DtÞ;

Dx0
20 ¼ *f2ðD ’x1þ;Dx20;D ’x20;Dt;Dt1;Dt2Þ � x20 ¼Def

f2ðD ’x1þ;Dx20;D ’x20;DtÞ;

D ’x0
20 ¼ *f3ðD ’x1þ;Dx20;D ’x20;Dt;Dt1;Dt2Þ � ’x20 ¼Def

f3ðD ’x1þ;Dx20;D ’x20;DtÞ;

Dt0 ¼ Dtþ oDt1 þ oDt2 ¼Def
f4ðD ’x1þ;Dx20;D ’x20;DtÞ: ð34Þ

The Poincar!e map (34) may be expressed briefly by

DX 0 ¼ *f ðn;XÞ � X� ¼Def
f ðn;DXÞ; ð35Þ

where f ðn;DXÞ ¼ ð f1; f2; f3; f4Þ
T; DX ¼ ðD ’x1þ;Dx20; D ’x20;DtÞ

T and DX 0 ¼ ðD ’x0
1þ;Dx0

20;D ’x0
20;Dt

0ÞT

are the disturbed vectors of the fixed point X� of 1-1-1 symmetrical motion.
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Linearizing the Poincar!e map at the fixed point X� ¼ ð ’x1þ;x20; ’x20; t0Þ
T results in the matrix

Df ðn; 0Þ ¼

@f1

@D ’x1þ

@f1

@Dx20

@f1

@D ’x20

@f1

@Dt
@f2

@D ’x1þ

@f2

@Dx20

@f2

@D ’x20

@f2

@Dt
@f3

@D ’x1þ

@f3

@Dx20

@f3

@D ’x20

@f3

@Dt
@f4

@D ’x1þ

@f4

@Dx20

@f4

@D ’x20

@f4

@Dt

0BBBBBBBBBBB@

1CCCCCCCCCCCA
ðn;0;0;0;0Þ

: ð36Þ

Let DX ¼ ðy1; y2; y3; y4Þ
T ¼ ðD ’x1þ;Dx20;D ’x20;DtÞ

T; the elements of the matrix are given by

@fj

@yi

¼
e@f@fj

@yi

þ
e@f@fj

@Dt1
�
@Dt1

@yi

þ
e@f@fj

@Dt2
�
@Dt2

@yi

ði; j ¼ 1; 2; 3; 4Þ: ð37Þ

If the map *f ðn;XÞ has a fixed point then the vibro-impact system shown in Fig. 1 has a periodic
orbit with two symmetrical impacts per force cycle. If none of the eigenvalues of the matrix
Df ðn0; 0Þ lie on the unit circle or outside it, then it can be shown that *f ðn;XÞ has essentially the
same behavior as *f ðn0;XÞ for jn� n0j small. Suppose that for n ¼ n0; the system has a stable
period-one double-impact symmetrical solution X�ðtÞ: Hence in this case, for jn� n0j small, the
solutions of the vibro-impact system near X�ðtÞ have stable period-one double-impact
symmetrical behavior as n ¼ n0: If the eigenvalues of Df ðn; 0Þ with the largest modules lie on
the unit circle when n ¼ nc ðnc is a bifurcation value) then there is the possibility of bifurcations
taking place. In general, bifurcations occur in various ways according to the numbers of the
eigenvalues on the unit circle and their position on the unit circle, resulting in qualitative changes
of the system dynamics. If Df ðn; 0Þ has a pair of complex conjugate eigenvalues, crossing the unit
circle as n passes through nc; the remainder of the spectrum of Df ðn; 0Þ will be assumed to stay
strictly inside the unit circle, Hopf bifurcation associated with period-one double-impact
symmetrical motion may take place and it is discussed in Section 6 of this paper. If Df ðn; 0Þ has a
real eigenvalue, crossing the unit circle from the point ð�1; 0Þ or point (+1, 0) as n passes nc; the
remainder of the spectrum of Df ðn; 0Þ are strictly inside the unit circle, period-doubling or
pitchfork bifurcation of period-one double-impact symmetrical motion can occur respectively and
a detailed discussion of them follows in Section 5 of this paper.

It should be mentioned that the existence condition (17) is stronger in the comparison with
stability conditions. It means that theoretically stable 1-1-1 symmetrical motion can not really
exist when the existence condition is not met.

5. Pitchfork bifurcation, period-doubling bifurcation and grazing singularity

The existence and stability of period-one double-impact symmetrical motion were found
explicitly in this section. Also, local bifurcations at the points of change in stability were
considered, thus giving some information about the existence of other types of motions,
such as pairs of antisymmetrical orbits. The vibro-impact system, with system parameters
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(1): m2 ¼ 0:6667; k2 ¼ 0:8333; z ¼ 0:05; R ¼ 0:8; f20 ¼ 0 and b ¼ 0:1; has been chosen for analysis.
The forcing frequency o is taken as a control parameter. The eigenvalues of Df ðo; 0Þ are
computed with oA½3:3; 4:0
: All eigenvalues of the matrix Df ðo; 0Þ still stay inside the unit circle
with oAð3:716972; 4
: As o ¼ oc ¼ 3:716972; Df ðo; 0Þ has a real eigenvalue l1ðocÞ at the point
(1,0) of the unit circle in the complex plane, while all other eigenvalues liðocÞ ði ¼ 2; 3; 4Þ are still
inside the unit circle. The real eigenvalue l1ðocÞ will escape the unit circle from the point (1,0), and
the other eigenvalues will stay still inside the unit circle, as o passes through oc ¼ 3:716972
decreasingly. Pitchfork bifurcation of period-one double-impact symmetrical motion occurs in
this case.

The above-mentioned analysis is verified by presentation of numerical results for the two-degree-
of-freedom system with symmetrical rigid stops. The Poincar!e section is taken in the form
s ¼ fðx1; ’x1;x2; ’x2; yÞAR4 � S; x1 ¼ b; ’x1 ¼ ’x1þg: Numerical analyses are carried out for deter-
mining the dynamical responses of the vibro-impact system. In Fig. 2 results from the simulation
are shown for system parameters (1), and o varying in the range [0.5, 4.5]. Impact velocities at the
stop A are shown versus o: Some periodic response and phase plane portraits of the mass M1 are
plotted in Figs. 3 and 4, respectively. It is shown, by the numerical results, that the system can
exhibit stable period-one double-impact symmetrical motion with oAð3:716972; 4:5
: The stable
responses and phase plane portrait of period-one double-impact symmetrical motion are plotted
for o ¼ 4:0 in Fig. 3. As o is decreased from oc ¼ 3:716972; the 1-1-1 symmetrical motion has
changed its stability, and pitchfork bifurcation of 1-1-1 symmetrical motion occurs so that a pair of
antisymmetrical double-impact orbits are born, as seen in Figs. 4(a) and (b). Two 1-1-1
antisymmetrical orbits, caused by different initial conditions, are represented, respectively, by real
lines and dotted lines in Figs. 4(a) and (b). The analysis of stability and local bifurcation of period-
one double-impact symmetrical motion is supported well by the numerical results. With further
decrease in parameter o; the 1-1-1 antisymmetrical motions will lose stability, these motions then
each undergo a succession of period doubling bifurcations, which eventually result in apparently
non-periodic, or chaotic motions. The 2-2-2 impact motion, 4-4-4 impact motion, 8-8-8 impact
motion and chaos of the mass M1 are plotted, respectively, in the form of phase plane portraits, for
o ¼ 3:1; o ¼ 3:029; o ¼ 2:989 and o ¼ 2:98 in Figs. 4(c)–(f).

When the mass M1 arrives at the right stop A with zero velocity ’x1 ¼ 0; a ‘‘grazing’’ bifurcation
will occur, which causes singularity of the impact map. The Poincar!e map of the vibro-impact
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system is discontinuous in the case of grazing the stop. Let F1 represent a resultant force, which
consists of spring-restoring force, damping force and sinusoidal excitation acted on the impacting
mass M1; i.e.,

F1 ¼ ðx2 � x1Þ þ 2zð ’x2 � ’x1Þ þ ð1� f20Þ sin ðot þ tÞ: ð38Þ

ARTICLE IN PRESS

Fig. 3. The phase plane portrait and steady response of the impacting mass M1;o ¼ 4:0: (a) phase plane portrait;

(b) the steady response ðot; x1Þ; (c) the steady response ðot; ’x1Þ:

Fig. 4. The phase plane portraits of the impacting mass M1: (a) pair of antisymmetrical period-one double-impact

motions, o ¼ 3:5; (b) pair of antisymmetrical period-one double-impact motions, o ¼ 3:3; (c) the 2-2-2 asymmetrical

motion, o ¼ 3:1; (d) the 4-4-4 asymmetrical motion, o ¼ 3:029; (e) the 8-8-8 asymmetrical motion, o ¼ 2:989;
(f ) chaos, o ¼ 2:9:
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If the resultant force F1; at the instant when the mass M1 arrives at the right stop A with zero
velocity ’x1 ¼ 0; is in the positive direction, i.e.,

F1 ¼ ð %x20 � bÞ þ 2z ’%x20 þ ð1� f20Þ sin ðtÞ > 0; ð39Þ

the force simply pushes the mass M1 against the stop A; with which it remains in contact. The two-
degree-of-freedom vibro-impact system becomes a single-degree-of-freedom oscillator subjected
to sinusoidal excitation, and its differential equation of motion is

mm .x2 þ 2zð1þ mcÞ ’x2 þ ð1þ mkÞx2 � b ¼ f20 sin ðot þ tÞ: ð40Þ

Until the resultant force F1 changes its direction (sign), the force begins to push the mass M1

away from the stop again, and the single-degree-of-freedom oscillator becomes a two-degree-of-
freedom vibro-impact system. In Eq. (39), %x20 and ’%x20 represent, respectively, displacement and
velocity of the mass M2 at the instant when the mass M1 arrives at the right stop A with zero
velocity ’x1 ¼ 0:

If the resultant force F1 acted on the mass M1 is in the negative direction immediately after the
mass M1 contacts the right stop A with zero velocity, i.e.,

F1 ¼ ð %x20 � bÞ þ 2z ’%x20 þ ð1 � f20Þ sin ðtÞo0; ð41Þ

then the force F1 immediately drives the mass M1 off the stop. The mass M1 spends no time stuck
to the stop, and moves in opposite direction with initial velocity ’x1 ¼ 0:

A special case must be considered, in which the resultant force F1 equals zero when the mass M1

arrives at the stop A with zero velocity. If F1 changes in positive direction immediately at the
instant when the mass contacts the stop A; then the mass M1 will stick to the stop; otherwise the
force F1 will drive it off the stop immediately.

The system with system parameters (2): m2 ¼ 0:6667; k2 ¼ 0:8333; b ¼ 0:1; R ¼ 0:7; f20 ¼ 0
and z ¼ 0:05 is chosen for analysis by numerical simulation. When the forcing frequency o passes
through oc ¼ 3:09227 by a progressively decreasing way, the period-one double-impact
antisymmetrical motions have changed stability, and period-doubling bifurcation of 1-1-1
antisymmetrical motions occur so that 2-2-2 motions have been generated. In Figs. 5(a) and (b)
are plotted the global bifurcation diagrams of 1-1-1 symmetrical orbit. There exist two different
antisymmetrical 1-1-1 orbits and corresponding diagrams of bifurcation due to different initial
conditions, as seen in Figs. 5(a1) and (b1). When the forcing frequency is decreased to o ¼ 2:999;
the system exhibits 2-2-2 motion with ‘‘grazing the stop’’, i.e., the mass M1 begins to touch the
stop A with zero velocity ð ’x1� ¼ 0Þ; which results in singularity of Poincar!e map and qualitative
changes of the system dynamics. Because of 2-2-2 motion with grazing the stop A; there does not
exist 4-4-4 motion bifurcating from 2-2-2 motion with further decrease in the forcing frequency o;
as we will see in Fig. 5. For this reason that the mass’s grazing the stop A results in the singularity
of Poincar!e map, period-doubling bifurcations and dynamic evolution taking place in the vibro-
impact system are qualitatively different from those in usual consecutive maps. On grazing
boundary of 2-2-2 motion a new impact in the motion period appears and 2-2-3 motion stabilizes.
Such a case of transition is shown in Figs. 6(a)–(c), and the phase plane portrait of the 2-2-2
impact motion with grazing the stop A is shown in Fig. 6(b). With further decrease in o; the
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system exhibits stable 2-2-3 impact motion. As o is decreased to o ¼ 2:989; a grazing boundary
instability of 2-2-3 impact motion appears again, one impact in the motion period appears and the
motion transits into 2-2-4 motion. Such a case of transition is similar to the 2-2-2 motion with
grazing the stop A: The phase plane portrait of 2-2-4 orbit beyond the grazing boundary is shown
in Fig. 6(d). As o is decreased progressively, the system falls into chaotic motion via period-
doubling bifurcation and Feigenbaum period-doubling cascade of 2-2-4 (or 2-4-2) impact orbit. In
the route to chaos via period-doubling bifurcation of 1-1-1 antisymmetrical motion, it is possible
that grazing bifurcation occur. Grazing bifurcation results in singularity and discontinuity of the
Poincar!e map so that the period-doubling cascades of 1-1-1 antisymmetrical motions are
discontinuous.

The system may exhibit more complicated dynamical behavior in the route to chaos via
pitchfork bifurcation of period-one double-impact symmetrical motion. An interesting route from
symmetric double-impact orbit to chaos is observed. The system with system parameters (3):
m2 ¼ 0:3333; k2 ¼ 0:6667; b ¼ 2:4; z ¼ 0; f20 ¼ 0 and R ¼ 0:8 is analyzed. When the forcing
frequency o passes through oc ¼ 1:343812 by a progressively decreasing way, pitchfork
bifurcation of period-one double-impact symmetrical orbit occurs, and the system exhibits the
period-one double-impact antisymmetrical motions, see Figs. 7(a), (b) and Fig. 8(a). With
decrease in o; period-doubling bifurcation of 1-1-1 antisymmetrical motion occurs, and the 2-2-2
antisymmetrical motion is generated as seen in Figs. 7(c), (d) and Fig. 8(b). With further decrease
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in o; the 2-2-2 motion will change its stability, and Hopf bifurcation of 2-2-2 motion occurs, see
Fig. 8(c). Finally, the system settles into chaotic motion via tori doubling and phase locked as seen
in Figs. 8(d)–(h). The chaotic motions of the system, represented by ‘‘belt-like’’ attractor in
projected Poincar!e sections, are shown in Figs. 8(f )–(h), and the width of ‘‘belt-like’’ attractors
increases with decrease in the forcing frequency o: It is seen that period-doubling bifurcation of
1-1-1 antisymmetrical motion occurs in the example, but no period-doubling cascade emerges
because of Hopf bifurcation of 2-2-2 motion.
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Fig. 6. The phase plane portraits near the grazing boundary: (a) the 2-2-2 motion, o ¼ 3:01; (b) the 2-2-2 motion on the

grazing boundary, o ¼ 2:999; (c) the 2-2-3 motion beyond the grazing boundary I, o ¼ 2:995; (d) the 2-2-4 motion

beyond the grazing boundary II, o ¼ 2:985:

Fig. 7. Phase plane portraits: (a) periodic motion with two symmetrical impacts per force cycle, o ¼ 1:6;
(b) antisymmetrical period 1 double-impact motion, o ¼ 1:31; (c) periodic 2-2-2 motion, o ¼ 1:309; (d) periodic

2-2-2 motion; o ¼ 1:309:
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6. Hopf bifurcation of periodic motion with two symmetrical impacts per force cycle

Shaw [24,25] studied dynamics of a single-degree-of-freedom system having symmetrically
placed rigid stops and subjected to periodic excitation, and found that no Hopf bifurcation of
symmetrical double-impact motion occurs for the system. However it is found that there exists
Hopf bifurcation of symmetrical double-impact motion for the two-degree-of-freedom vibro-
impact system shown in Fig. 1. By computing and analyzing the eigenvalues of Df ðo; 0Þ; we can
find Hopf intersecting conditions of 1-1-1 symmetrical motion of the vibro-impact system. The
system, with system parameters (4): m2 ¼ 0:8; k2 ¼ 0:8333; b ¼ 0:25; R ¼ 0:8; f20 ¼ 0 and z ¼
0:0075; is considered. The eigenvalues of Df ðo; 0Þ are computed with oA½2:9; 3:2
: When the
forcing frequency o is on the interval oA½2:9; 3:05639Þ; all eigenvalues of Df ðo; 0Þ stay strictly
inside the unit circle. As o ¼ oc ¼ 3:05639; Df ðo; 0Þ has a complex conjugate pair of eigenvalues
l1;2ðocÞ on the unit circle, while the remainder of eigenvalues are still inside the unit circle. The
complex conjugate pair of eigenvalues l1;2ðocÞ will cross the unit circle correspondingly, and the
other eigenvalues will still stay inside the unit circle as o passes through oc . It is possible that
Hopf bifurcation of 1-1-1 symmetrical motion occur for o > oc: The theoretical analyses of the
example are well supported by numerical results below. The Poincar!e section is taken in the form
s; which will be four dimensional. The section is then projected to the ðx2; ’x2Þ or ðt;x2Þ plane, etc.,
which is called the projected Poincar!e section. A theoretical fixed point of 1-1-1 symmetrical
impact motion, with corresponding forcing frequency o; is taken as an initial map point. Route
from quasi-periodic impact to chaos via phase locked is shown in Fig. 9. It is shown by the
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Fig. 8. The projected Poincar!e section of the vibro-impact system: (a) the map procedure from unstable 1-1-1

symmetrical motion to stable 1-1-1 antisymmetrical motion, o ¼ 1:31; (b) the route of unstable 1-1-1 motion to stable

2-2-2 antisymmetrical motion, o ¼ 1:309; (c) the attracting invariant circles of 2-2-2 points (quasi-periodic impact

motion), o ¼ 1:3067; (d) the torus doubling, o ¼ 1:305815; (e) phase locked, o ¼ 1:30573805; (f ) chaos, o ¼ 1:30567;
(g) chaos, o ¼ 1:3056; (h) chaos, o ¼ 1:3048:
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numerical results that the system exhibits stable period-one double-impact symmetrical motion
with oA½2:9; 3:05639Þ; which is represented by a stable fixed point in the projected Poincar!e
sections. As expected, a quasi-periodic response, represented by the attracting invariant circle
shown in Fig. 9(a), appears at o ¼ 3:062; just after the Hopf bifurcation value o ¼ 3:05639: It is
to be noted that the quasi-periodic attractor, which is identified by a closed curve in the projected
Poincar!e section, is smooth in nature near the bifurcation point. As the value of o moves further
away from the Hopf bifurcation value, the invariant circle expands, and the smoothness of the
quasi-periodic attractor is changed by degrees until it is destroyed. With further increase in o;
phase locked takes place so that the quasi-periodic motion gets locked into a periodic attractor of
higher (than the basic) period, which subsequently becomes unstable and chaotic. A periodic
attractor is shown for o ¼ 3:09 in Fig. 9(b). The chaotic motion of the system, represented by
‘‘belt-like’’ attractor in projected Poincar!e section, is shown in Fig. 9(c).

The vibro-impact system with system parameters (5): m2 ¼ 0:5; mk ¼ 0:5146; b ¼ 0:1; R ¼ 0:8;
f20 ¼ 0; and z ¼ 0:0025 has been chosen for analysis. When the forcing frequency o passes
through the critical value oc ¼ 5:78862 decreasingly, Df ðo; 0Þ has a complex conjugate pair of
eigenvalues l1;2ðocÞ escaping correspondingly the unit circle, the remainder of eigenvalues are still
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Fig. 9. The projected Poincar!e section: (a) the attracting invariant circle of 1-1-1 symmetrical point (quasi-periodic

impact motion), o ¼ 3:062; (b) phase locked, o ¼ 3:09; (c) chaos, o ¼ 3:12:

Fig. 10. The projected Poincar!e section: (a) the attracting invariant circle of 1-1-1 point (quasi-periodic impact motion),

o ¼ 5:73; (b) the attracting invariant circle, o ¼ 5:7; (c) the route from unstable 1-1-1 point to chaos via a quasi-

attracting invariant circle, o ¼ 5:5:
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inside the unit circle. This means that Hopf bifurcation of 1-1-1 symmetrical motion occurs for
oooc: The quasi-periodic impact motion, represented by the attracting invariant circle in
projected Poincar!e section, are plotted for o ¼ 5:73 and o ¼ 5:7 in Figs. 10(a) and (b). With
decrease in o; the system falls into chaotic motion via a quasi-attracting invariant circle [15]. The
quasi-attracting invariant circle is attracting for the map point inside the circle, and repelling for
the map point outside it. The route, from unstable 1-1-1 symmetrical motion to chaos via the
quasi-attracting invariant circle, is shown for o ¼ 5:5 in Fig. 10(c).

7. The influence of system parameters on periodic motions and bifurcations

The two-degree-of-freedom model studied here involves seven system parameters:
o;m2; k2; f20;R; z and b: Due to this relatively large number of parameters the detailed influence
of each parameter on the system dynamics is not presented here. However, it is of special interest
to acquire an overall picture of the system dynamics for some extreme values of parameters,
especially those which relate to the degenerated case of a single-degree-of-freedom system. Taking
system parameters: m2 ¼ 0:5; k2 ¼ 0:5; R ¼ 0:8; z ¼ 0:1; b ¼ 0:1 and f20 ¼ 0; as the criterion
parameters, we analyze the influence of system parameters on the system dynamics. Thus, in
Figs. 11 and 12 some bifurcations diagrams corresponding to some extreme parameter values are
presented. Only changed parameter is given in Figs. 11(b)–(j) and 12, and all the other parameters,
not given, are the same as criterion parameters. In most case one observes the typical behavior,
from Figs. 11 and 12, that period-one double-impact symmetrical motion generally undergoes
pitchfork bifurcation with decrease in o: Hopf bifurcation of the motion occurs only in the case of
larger values b or lower damping. Period-one double-impact antisymmetrical motion will undergo
different types of bifurcations according to variation of system parameters. The bifurcation
diagram, corresponding to the criterion parameters, is shown in Fig. 11(a). Hopf bifurcation of
period-one double-impact antisymmetrical motion occurs with decrease in the forcing frequency.
When the coefficient of restitution is low, Fig. 11(b), the 4-4-4 motion exists over a region of low
forcing frequencies, and the region of chaotic motion become smaller. The chaotic region shrinks,
and saddle–node bifurcation of period-one double-impact antisymmetrical motion will occur as o
is changed decreasingly. Low damping, Fig. 11(c), leads to enlarged areas of chaotic motions, and
Hopf bifurcation of period-one double-impact symmetrical motion occurs with decrease in o:
There exists also the period-one double-impact symmetrical motion in another relatively narrow
range of the forcing frequency separated by two regions of other periodic and chaotic motions, of
which pitchfork bifurcation is created with decrease in o: Saddle–node bifurcation of period-one
double-impact antisymmetrical motion will occur for large damping as o is changed decreasingly,
see Fig. 11(d). For low m2 and large k2 the behavior is similar to that of a one-degree-of-freedom
system (in the appendix), as seen in Figs. 11(e) and (h), respectively. Period-doubling bifurcation
of period-one double-impact antisymmetrical motion may be observed obviously in the two
bifurcation diagrams. When m2 becomes larger the period-doubling bifurcation associated with
period-one double-impact antisymmetrical motion occurs; see Fig. 11(f ). When k2 becomes
smaller, the system may exhibit period-one double-impact antisymmetrical motion in two
different internals of forcing frequency, and Hopf bifurcation of the periodic motion occurs in the
first internal and period-doubling bifurcation does in the second with decrease in o; see Fig. 11(g).
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This represents a system with a very stiff spring between the masses. When f20 increases, the
chaotic region shrinks, and period-doubling bifurcation of period-one double-impact antisymme-
trical motion will take place as o is changed by a progressively decreasingly way; see
Figs. 11(i) and ( j). The values of f20 influence the impact velocities significantly. Large values of f20
will result in low impact velocities. The phenomena become more pronounced when the value of
f20 is larger.

The clearance is the most important system parameter for the non-linear system shown in
Fig. 1. Studying the influence of the clearance, one finds that, smaller values of b generally lead to
enlarged areas of the chaotic motions as seen in Fig. 12(a), and the period-one double-impact
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Fig. 11. Bifurcation diagrams for the impact velocity of the impacting mass: (a) m2 ¼ 0:5; k2 ¼ 0:5; f2 ¼ 0; b ¼ 0:1;
z ¼ 0:1; R ¼ 0:8; (b) R ¼ 0:3; (c) z ¼ 0:01; (d) z ¼ 0:6; (e) m2 ¼ 0:1; (f ) m2 ¼ 0:99; (g) k2 ¼ 0:01; (h) k2 ¼ 0:9;
(i) f2 ¼ 0:3; ( j) f2 ¼ 0:6:
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antisymmetrical motion will undergo period doubling bifurcation with gradual decrease in o:
When b further decreases, the window of periodic 1-1-1 motion moves towards higher frequencies.
Moreover, smaller values of b result in lower impact velocities. When b is changed increasingly,
the chaotic regions shrinks gradually, and the period-one double-impact antisymmetrical motion
will undergo saddle–node bifurcation as the forcing frequency is decreased; see Figs. 12(b)–(e).
For large values of b; the chaotic motion exists over the relatively narrow frequency range shown
in Figs. 12(f )–(h). The behavior is similar to that of a one-degree-of-freedom system (see
Figs. 17(g)–(i) in the appendix). With gradual decrease in o; the period-one double-impact
symmetrical motion of the two-degree-of-freedom vibratory system with symmetrical rigid stops
will generally undergo Hopf bifurcation in the case of large values of b: However, for larger values
of b the mass M1 cannot hit the stops, and the system will undergo simple oscillations and behave
as a linear system.

In most cases one observes the windows of period-one four-impact symmetrical motions,
separated by other periodic or chaotic regions, in the bifurcation diagrams. The period-one four-
impact symmetrical motion exists over the relatively narrow forcing frequency range; see
Figs. 11(a)–(h) and 12(a)–(e). Following the steady state motion as o decreases, it is seen that a
supercritical pitchfork bifurcation generally occurs, which results in the creation of a pair of
antisymmetrical four-impact period-one motions. These motions, in most cases, then each
undergo a succession of period doubling, which eventually result in apparently non-periodic, or
chaotic motions. Here the system with criterion parameters is chosen for analysis. Representative
orbits are shown in Figs. 13 and 14. The stable 1-2-2 symmetrical motion exists in the frequency
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Fig. 11 (continued).
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Fig. 12. The global bifurcation diagrams for the impact velocity of the impacting mass; (a) b ¼ 0:01; (b) b ¼ 0:2;
(c) b ¼ 0:3; (d) b ¼ 0:4; (e) b ¼ 0:5; (f ) b ¼ 0:6; (g) b ¼ 0:7; (h) b ¼ 0:8:
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range oAð1:7125; 1:975Þ: At o ¼ 1:7125; two new antisymmetrical motions, each having period
one and four impacts, appear as the symmetrical motion becomes unstable; see Figs. 14(b) and (c).
This means that a supercritical pitchfork bifurcation of the symmetrical motion occurs at the
value of forcing frequency. Period doubling bifurcation of the antisymmetrical motion occurs as
the forcing frequency varies decreasingly, and the system eventually falls into apparently non-
periodic, or chaotic motions via the period doubling sequences; see Figs. 14(d)–(f ).

An observation of interest is the existence of Hopf bifurcation of period-one double-impact
antisymmetrical motion in bifurcation diagrams shown in Figs. 11(a), (c) and (g). A representative
quasi-periodic motion corresponding to Fig. 11(g) is shown in Figs. 15(a) and (b). The quasi-
periodic impact motion finally transits to chaos via phase locked as o is changed decreasingly;
see Figs. 15(c) and (d). It is found that there exists not only Hopf bifurcation associated with
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Fig. 13. The steady response of the impacting mass M1; 1-2-2 symmetrical motion, o ¼ 1:85:

Fig. 14. The phase plane portraits of the impacting mass M1: (a) 1-2-2 symmetrical motion, o ¼ 1:85; (b) 1-2-2

antisymmetrical motion, o ¼ 1:65; (c) 1-2-2 antisymmetrical motion, o ¼ 1:65; (d) 2-4-4 motion, o ¼ 1:635; (e) 4-8-8-

motion, o ¼ 1:624; (f ) chaos, o ¼ 1:6:
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period-one double-impact symmetrical motion, but also Hopf bifurcation of period-one double-
impact antisymmetrical motion occurs in the non-linear system shown in Fig. 1.

The similarities with the one-degree-of-freedom system can especially be found in the two cases
of low m2 (Fig. 11(e)) or large k2 (Fig. 11(h)). These results are in agreement with the results
presented in Fig. 15(a) of the appendix for single-degree-of-freedom system having symmetrically
placed rigid stops. The similarities with the one-degree-of-freedom system, in the case of large z;
can also be observed in Figs. 11(d) and 7(c) (in the appendix). Moreover, a common
characteristic, for the one or two degree of freedom systems, is that large values b generally
lead to narrow areas of chaotic motion and high impact velocities. Similarities in bifurcations can
be observed by comparing Figs. 11, 12 and 17. The two-degree-of-freedom system shows
bifurcations similar to those of one-degree-of-freedom system: pitchfork bifurcation of
symmetrical two-impact motion, period doubling and saddle–node bifurcations of antisymme-
trical two-impact motion, grazing bifurcation. However, there are some significant deviations, and
important differences in system behavior at some extreme values of the parameters. Such cases are
low values of z (Fig. 11(c)) or k2 (Fig. 11(g)) and high values of f20 (Fig. 12( j)). The second case is
high stiffness of the spring between the masses compared to the spring attached to the wall.
Besides the deviations mentioned above, there is also a significant difference in bifurcation
behavior. No Hopf bifurcation occurs in the one-degree-of-freedom vibrating system with
symmetrical rigid stops.
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Fig. 15. The projected Poincar!e section: (a) the attracting invariant circle of 1-1-1 antisymmetrical point, o ¼ 3:35;
(b) the attracting invariant circle of 1-1-1 antisymmetrical point, o ¼ 3:33; (c) phase locked, o ¼ 3:32; (d) chaos,

o ¼ 3:3:

G.W. Luo, J.H. Xie / Journal of Sound and Vibration 273 (2004) 543–568564



8. Conclusions

A two-degree-of-freedom system having symmetrically placed rigid stops and subjected
to periodic excitation is considered. An important application where the model studied here
may be of use is in the dynamics of heat exchanger tubes in nuclear reactors [23]. Such tubes
are designed to have clearances at support points to allow for thermal expansion. When
fluid flows past these tubes vortex shedding occurs and the tubes are excited. The response
of such systems is very complicated [23] and the wearing of these tubes is a major problem
in the nuclear industry. Fluid flow past panels and beams can result in chaotic motions
and thus bifurcation behavior and chaotic motions may provide an appropriate tool in the
study of tube wear. Stability, pitchfork and Hopf bifurcations of period-one double-
impact symmetrical motion of the system with symmetrical rigid stops are analyzed in
the paper. Routes of 1-1-1 symmetrical motions to chaos are observed by numerical
simulation.

When the pitchfork bifurcation occurs, the period-one double-impact symmetrical motion will
change its stability and a pair of period-one double-impact antisymmetrical motions are born.
There exist two different 1-1-1 antisymmetrical orbits and corresponding diagrams of bifurcation
due to different initial conditions. With decrease in the forcing frequency o; the 1-1-1
antisymmetrical motions will lose stability, these motions then each undergo a succession of
period doubling bifurcations, which eventually result in apparently nonperiodic, or chaotic
motions.

There exist the motions with grazing the stop in the route to chaos, which cause singularities of
Poincar!e map. A new impact in the motion period usually appears or vanishes on the grazing
boundary so that the period-doubling cascades of 1-1-1 antisymmetrical motions are
discontinuous.

Interesting features like Hopf bifurcation of 2-2-2 motion, torus bifurcation and phase locked
are found in the route to chaos via pitchfork bifurcation of 1-1-1 symmetrical motion. This is one
of non-typical routes to chaos.

No Hopf bifurcation of symmetrical double-impact motion occurs in a single degree-
of-freedom system having symmetrically placed rigid stops and subjected to periodic
excitation [24,25]. However, Hopf bifurcations of 1-1-1 symmetrical and asymmetrical
motions are shown to exist in the two-degree-of-freedom vibro-impact system with
symmetrical rigid stops. As the forcing frequency is changed, the quasi-periodic impact
motion may lead to chaos via torus bifurcation, phase locked or quasi-attracting invariant
circle.

The similarities with the one-degree-of-freedom system are found in the two cases of low
m2; large k2: The similarities, in system behavior, can also be observed in the case of large
z: Besides the cases mentioned above, a common characteristic, for the one- or two-degree-
of-freedom systems with symmetrical rigid stops, is that large values of b generally lead to narrow
areas of chaotic motion and high impact velocities. For larger values of b the mass M1 cannot
hit the stops, and the system will undergo simple oscillations and behave as a linear system.
However, there are some significant deviations, and important differences in system behavior at
some extreme values of the parameters. Such cases are low values of z; low values of k2 or high
values of f20:

ARTICLE IN PRESS

G.W. Luo, J.H. Xie / Journal of Sound and Vibration 273 (2004) 543–568 565



Acknowledgements

The authors gratefully acknowledge the support by the National Science Foundation of China
(10172042, 10072051), Special Foundation of Railway (J99Z100) and the Provincial Science
Foundation of Gansu (ZS011-A25-010-Z), China.

Appendix A

A one-degree-of-freedom system having symmetrically placed rigid stops and subjected to
periodic excitation is shown in Fig. 16.

Between the stops, the non-dimensional differential equations of motion are given by

.x þ 2z ’x þ x ¼ sinðot þ tÞ; jxjob:

When the impacts occur, for jxj ¼ b; the velocities of the impacting mass M are changed
according to the impact law

’xAþ ¼ �R ’xA� ðx1 ¼ bÞ; ’xCþ ¼ R ’xC� ðx1 ¼ �bÞ:

In these relations we have used the non-dimensional quantities

o ¼ O

ffiffiffiffiffiffi
M

K

r
; t ¼ T

ffiffiffiffiffiffi
K

M

r
; z ¼

C1

2
ffiffiffiffiffiffiffiffiffi
KM

p ; b ¼
BK

P
; x ¼

KX

P
:

The Poincar!e section is s ¼ fðx; ’x; yÞAR2 � S;x ¼ b; ’x ¼ ’xþg:
The system parameters b ¼ 0:1; z ¼ 0:1 and R ¼ 0:8 are taken as the criterion parameters; the

influence of system parameters such as the damping ratio and clearance on the system dynamics is
analyzed. The bifurcation diagrams for the impact velocity of the impacting mass are shown in
Fig. 17. Only changed parameter is given in Figs. 17(b)–(i), and all the other parameters, not
given, are the same as the criterion parameters.
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Fig. 16. The schematic of a one-degree-of-freedom vibratory system with symmetrical rigid stops.
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